Machine Learning in Game Environments provides a perfectly controlled simulation of events that could be
relatable to real-world environments. In years past, machine learning has been applied to games such as
Go (Silver et al., 2016) and classic Atari games (Mnih et al., 2015) and has shown to outperform human
opponents. However, these environments are designed to work specifically there and networks are
trained to be rigid in their application. With these environments focused on skill, a vast amount of games

that focus on creativity and building untouched.

The typically repetitive nature of exploratory games, commonly referred by gamers as ‘grinding’, should
prove to be an easy first task. There are a number of objectives that could be used, from gathering materials
to crafting items, exploring maps to battling opponents. A common objective follows the basic ‘gather-craft’

cycle as it is very repetitive and easy to predict.

~ Previous Research & Backgiond

In an exploratory game environment that is harder to gauge success, the aim is to develop an agent that can
accomplish a goal aside from purely winning and achieve more human-like behavior. For example, an agent
that might decide to explore the map to find the best spot to gather from trees, with plenty of trees nearby,

instead of going for the first tree in sight.

The first goal, however, is to ensure basic learning from the machine as applied to the crafting task which
implies gather materials and then crafting instead of crafting when no materials are in the inventory. To check

basic learning, multiple recipes can be used.

C Methods

By employing a options framework (Sutton, Precup, and Singh 1999), we look at the basic gather-craft cycle,
gathering materials to craft a more useful item, from exploratory video games. Using trained options, the

network might be able to determine the necessary subtasks to accomplish its overall goal as soon in Figure 2.

We apply this options model alongside an Double Dueling DQN or A3C network and an experience buffer to train

all the network for our goals.

Figure 1. Basic Cycle of working with the Options Model

Figure 2. Generation of Subgoals Example

Double Dueling DQN

- Chooses Actions and Generates Q-Values in seperate
networks after seperating Advantage and Value
- Advantage: Best Action to take compared to others

- Value: How good of a state we are in

Gilobal Network

Figure 4. Visual Breakdown of Double Dueling DON [—]—] [—I—J =]}
- @ @ [
Worker 1 Worker 2 Worker 3 Worker n
t ! } ¢

Figure 3. Visual Breakdown of the A3C Network
A3C Network
- Runs Asyncronously, multiple instances happening
at once that all train from and update the global network
- Policy: chances that an action is a good action to take

- Value: how good of a state we are in

© ResufssFutrework

Only recently, we were able to get the A3C network working with our environment and as such are unable
to present any results with this network. However, as similar tests with the Double Dueling DQN have shown,
that the options model is providing a steady improvement in the ability of the network to learn and a clear
transference of knowledge. Figure 11 shows the total rewards for the model across multiple episodes using a
crafting goal. As shown, the fewer options we give the model, the more steps it takes for the network to properly

identify it's goal so it may begin gaining positive rewards.

We hope to expand this project beyond the basic gather-craft cycle to later include map exploration, where
the agent is only able to see smaller parts of a big map at a given time, to be applied to searching objectives

such as find the treasure.

" R

4000 - W Without Options
S One Option Avaliable

‘mmm Four Options Avaliable

Cummulative Rewards

Steps Taken

Figure 11. Graph showing reward growth over steps for different numbers of options avaliable

34

LOUIS STOKES



