
ANDROID STUDIO 
PURE ANDROID



REQUIREMENTS

LAPTOP & CHARGER ANDROID STUDIO 
INSTALLED

KNOWLEDGE OF JAVA 
(PREFERRED, NOT 

REQUIRED)

ANDROID PHONE OR 
EMULATOR SETUP



DEVICES
Emulator or Android Phone Setup



EMULATOR

1. Start Android Studio, click Configure (Tools if Project is open)
2. Open AVD Manager and click Create Virtual Device
3. Create based on any device (Default is fine) and click Next



EMULATOR CONTINUED

4. Select any version of Android and click Next
• If you have an older version, it should be fine

5. Verify Settings and Finish



EMULATOR CONTINUED

6. Start your Emulator and Turn it on using Power Button

You’re ready to start 
Developing!



PHYSICAL DEVICE 
DEVELOPER OPTIONS

1. Go to Settings
2. Scroll to down to bottom and select About Phone
3. Under about Phone, find Build Number

• Placement can very, you can try searching for it 
• Tap that ~7 times.
• You should get a message about becoming a developer



DEVELOPER OPTIONS CONTINUED

4. Go back to the Main Settings Page
5. Select Developer Options, Toggle top switch to On
6. Scroll slowly to the section on Debugging 

• Toggle USB Debugging to On
7. Connect Device to Computer
8. If necessary, allow USB Debugging

You’re ready to start 
Developing!



ANDROID STUDIO



GETTING STARTED

1. Create a new Empty Activity Project, click Next
2. Call the app Countdown Timer and click Finish



ANDROID BASICS -
BACKGROUND

• Android Code is comprised of two main files
• XML File (Layout/Display)
• Java File (Code)

• XML can be done with either the GUI or by Text/Code
• I prefer Text, but for this we will be using GUI since it’s 

quicker
• If you want to use the Text option, you can



BACKGROUND CONTINUED

• Java is the main part of your program
• Connects to XML
• Can create parts of the XML

• In Java files, refer to the app outside of a java file as R
• i.e. R.layout.textViewName

• Refers to an object in the XML file with the id of textViewName
• Useful for updating layouts with new information



PROJECT: CREATE A 
COUNTDOWN TIMER

Test Always prototype then code

Next Java

Start XML



XML
• Things you’ll need

• EditText for Time
• Button to Start Timer
• TextView for Timer Display
• Optional: Button to Stop Timer
• Optional: Progress Bar

• ALWAYS ID your objects in XML
• Allows access in Java files



XML - CONSTRAINTS

• Describes position on screen
• Drag arrows from each side 

of a box to define constraints 
to different edges

• Easiest to have some sort of 
base in the very center of 
the screen

• Can be defined by spacing 
against sides or by spacing 
from another object



JAVA & XML

• Right now, we have a button that does nothing. Let’s change that!
• Write a method to retrieve data inputted into our EditText and send it to the 

timer
• Note: Anytime that a method is being called using a button, the button 

passes the view that it is (the button itself). Account for that in the 
parameters

• startTimer(View view)



ONCREATE

• All android activities start with an onCreate method
• Sets up display based on the attached XML file

• You can add other startup pieces onto it like we will now.
• In the Class, create a variable for a TextView for your display
• In the onCreate, save our display to it by finding it by id.

public class MainActivity extends AppCompatActivity {
TextView display;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
display = (TextView) findViewById(R.id.timerDisplay);

}



STARTTIMER(VIEW VIEW)

• https://we.tl/t-tC92pmB9fW
• Copy file using File Explorer and Paste into Android Studio 

(Project/Java/Main)
• We need a timer, text to display/update, and the data from our textview
• Retrieve Data from EditText

• Save the Edit Text Field
• EditText userInputField = (EditText) findViewById(R.id.timeInput);

• Save the text from it
• String input = userInputField.getText().toString();

• Parse your string to an int

https://we.tl/t-tC92pmB9fW


CREATE A TIMER

• Create a new timer
• Class has been provided! Feel free to look through this file at one point as there 

are a lot of cool things going on (updating the view)
• UpdatingCountDownTimer(int time, int CountDownInterval, TextView display, 

ProgressBar progress)
• CountDownInterval should simply be 1 for 1 second as we want the timer to 

update every second.
• If you’re not using the progress bar (which none should be yet) pass it as a 

null
• After the timer is created, start the timer by calling it’s start method.



STARTTIMER

public void startTimer(View view){
EditText yes = (EditText) findViewById(R.id.UserInput);
String input = yes.getText().toString();
int time = Integer.parseInt(input);
UpdatingCountDownTimer timer = new UpdatingCountDownTimer(time, 1, display, null);
timer.start();

}



ADD THE METHOD TO THE BUTTON

• Switch back to the XML Document and Click on the Button
• In the Attributes panel, you’ll see an onClick after a little bit of scrolling
• As the onClick attribute, type in our startTimer method (without parameters!)



RUN

1. Run the app with the play button in the top right hand corner
2. Select your device

• Could be emulator or physical device, which are split into two different sections



ERRORS?

• Raise your hand if you have errors
• Talk to the person next to you
• Read through the error



PROJECT FINISHED

• Optional: Make it Pretty
• Optional: Add progress bar
• Optional: Add stop timer button
• Optional: Add another screen



BEAUTIFY

• Use the style, colors, and other xml files in the res/values directory of your 
android app

• Defining Style, not applying
• Apply the style in the AndroidManifest



PROGRESS BAR

• UpdatingCountDownTimer was written to support progress bars
• Add a progress bar similar to how you added other elements and save it 

similar to how we saved the TextView



STOP BUTTON

• Another button, another method (similar to start)
• Save current time, destroy previous timer, modify start timer

• Next time user presses start timer, start based on your saved time.



PROBLEMS? COMMENTS? 
IMPROVEMENTS?

Email: lauryn.brough@hotmail.com
Project: https://github.com/lkbrough/CountDownTimer

Hope everyone enjoyed this 
workshop, learned some 
very basic android, and 

enjoys the rest of the 
Hackathon!

mailto:lauryn.brough@hotmail.com
https://github.com/lkbrough/CountDownTimer

	Android Studio Pure Android
	Requirements
	Devices
	Emulator
	Emulator Continued
	Emulator Continued
	Physical Device �Developer Options
	Developer Options Continued
	Android Studio
	Getting Started
	Android Basics - Background
	Background Continued
	Project: Create a countdown Timer
	XML
	XML - Constraints
	Java & XML
	OnCreate
	startTimer(View view)
	Create a timer
	startTimer
	Add the Method to the Button
	Run
	Errors?
	Project Finished
	Beautify
	Progress Bar
	Stop Button
	Problems? Comments? Improvements?

